

FOOT & ANKLE

Intelligently Designed.

Design Surgeon J. Kent Ellington, MD OrthoCarolina Charlotte. NC

The Medline UNITE Foot Recon Plating System is an indication-specific implant system thoughtfully designed to address the specific needs of the patient, surgeon and surgical team.

The system is based on our single-minded philosophy of Intelligent Design: To manufacture clinically advanced products with optimal functionality that are intuitive to use.

MTP Fusion	8
Lapidus	12
TMT Fusion	16
Evans Osteotomy	20
Cotton Osteotomy	24
MDCO	28
Ordering Information	32

Minimal Profile

Plates are fabricated with an exceptionally smooth, beveled edge to minimize soft tissue irritation for greater patient comfort.

Stronger Implants

15% stronger than a leading competitor to withstand post-operative implant stress*.

Anatomically Contoured Plates

Specifically and diligently shaped to the unique anatomical structures of the foot for a better, tighter fit.

Polyaxial Locking

Flexible screw configurations built into the plate provide for up to 15° off axis locking to promote customized, patient-specific fixation.

Optimized Compression

Compression slots are strategically located for placement in hard diaphyseal bone to encourage more effective compression at the joint to enhance the healing process.

Universal Plate Holes

All plates accept both 2.7 mm and 3.5 mm locking and non-locking screws, providing greater surgical flexibility.

Color-Coded System

The color-coded system matches instruments to the appropriate screws for easier and quicker identification.

Intuitive Application

Instruments and implants are arranged in order of procedure flow for greater efficiency.

^{*} Data on file.

Indications for use.

The Medline UNITE Foot Plating System is intended for use in the following procedures:

Arthrodesis of the first metatarsocuneiform joint (Lapidus Fusion)

Arthrodesis of the first metatarsophalangeal joint (MTP), including:

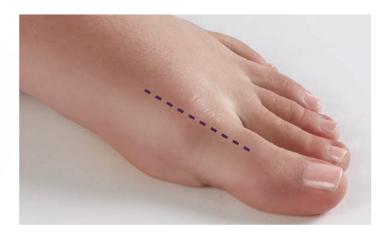
- » Primary MTP Fusion due to hallux rigidus and/or hallux valgus
- » Revision MTP Fusion
- » Revision of failed first MTP Arthroplasty implant

Flatfoot Osteotomies

- » Lateral Column Lengthening (Evans Osteotomy)
- » Plantar Flexion Opening Wedge Osteotomy of the Medial Cuneiform (Cotton Osteotomy)
- » Medial Displacement Calcaneal Osteotomy (MDCO)

Midfoot/Hindfoot Fusions

- » LisFranc Arthrodesis and/or Stabilization
- » 1st (Lapidus), 2nd, 3rd, 4th, and 5th Tarsometatarsal (TMT) Fusions
- » Intercuneiform Fusions
- » Navicular-Cuneiform (NC) Fusion
- » Talo-Navicular (TN) Fusion
- » Calcaneo-Cuboid (CC) Fusion
- » Medial Column Fusions (NC and 1st TMT)


Implant selection.

The Medline UNITE Foot Plating System contains an extensive selection of plates, screws and instruments for the most frequently performed procedures.

	МТР Р	LATES	LAPIDU:	S PLATES	TMTF	PLATES	COTTON PLATE	EVANS	PLATE	MDCO PLATE
	MTP Fusion	MTP Revision	Lapidus No Step	Lapidus Step	TMT Offset	TMT Straight	Cotton	Evans No Wedge	Evans Wedge	MDCO
		8 300	000		0000			1	2	3
Sizes	Sml/Med Dorsiflexion 0°, 5°, 10°	1 size	1 size	1, 2, 3, 4 mm	4, 5 Hole	2, 3, 4, 5 Hole	1 size	1 size	6, 8, 10 mm	5, 7.5, 10 mm Step
Left/Right/Uni.	Left/Right	Left/Right	Universal	Universal	Universal	Universal	Universal	Universal	Universal	Universal
				HALLUX RIGII	DUS PROCEDU	RES				
MTP Primary Fusion	•									
MTP Revision		•								
MTP Arthroplasty Revision		•								
				HALLUX VALO	GUS PROCEDU	RES				
Lapidus Fusion			•	•	•	•	•	•		
				MIDFO	OT FUSIONS					
LisFranc			•		•	•	•	•		
1st, 2nd, 3rd, 4th, 5th TMT Fusions			•	•	•	•	•	•		
Intercuneiform Fusions			•		•	•	•			
TN Fusion			•		•	•	•	•		
CC Fusion			•		•	•	•	•		
NC Fusion			•		•	•	•	•		
				FLATFOOT R	ECONSTRUCTI	ON				
Cotton Osteotomy							•			
Evans Osteotomy			•		•	•	•	•	•	
MDC Osteotomy										•

MTP Fusion.

1 Surgical Approach

» Perform a dorsal longitudinal incision beginning just proximal to the interphalangeal joint and ending 2-3 cm proximal to the MTP joint.

3 Plate Verification

» Thread the appropriate drill guide into the plate and use drill guide as a "joy-stick" to verify proper plate selection.

4 Plate Bend

» Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

2 Bone Preparation

A Metatarsal Reaming

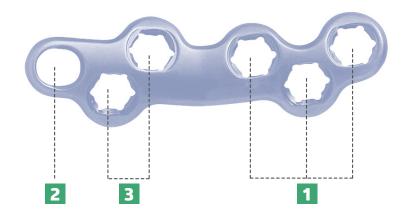
- » Expose the metatarsal head by displacing the phalanx plantarly.
- » Place a 1.6 mm guidewire into the center of the metatarsal head using a power driver.
- » Place the metatarsal reamer over the wire and begin to ream. Reamer should be spinning prior to touching bone.
- » Use progressively smaller reamers to remove all articular cartilage exposing bleeding bone.

2 Bone Preparation

- **B** Phalangeal Reaming
- » Expose the proximal phalanx by displacing the phalanx plantarly.
- » Place a 1.6 mm guidewire into the center of the proximal phalanx using a power driver.
- » Place the phalangeal reamer over the wire and begin to ream. Reamer should be spinning prior to touching bone.
- » Use progressively larger reamers, finishing with the same diameter as previously used for the metatarsal reaming to ensure congruent joint surfaces. Remove all articular cartilage exposing bleeding bone.
- » The 1.6 mm wire may be used to perforate the reamed surfaces of the metatarsal head and base of the proximal phalanx.
- » Bone graft may be used as needed to facilitate joint fusion.

5 Provisional Fixation

» The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.



6 Interfragmentary Cannulated Screw Placement

- » Place the 1.1 x 150 mm guidewire across the plantar aspect of the joint. Verify placement of the wire fluoroscopically.
- » Place the depth gauge over the wire to determine screw length. If the screw will be left proud, add the screw head height to the selected screw.
- » Place the countersink over the guidewire and countersink under manual power to recess the head of the screw to the desired depth. Avoid over-countersinking which may compromise the proximal cortex. Washers may be used if the proximal cortex is compromised.
- » Place the drill over the guidewire and drill just past the joint.
- » Place the screw over the guidewire and drive under manual power until screw is fully seated. Verify the final placement fluoroscopically.

8 MEDLINE**UNITE**

② Place the screws in the MTP fusion plate in the following order by zone.

On-Axis Drilling*

- » Select the locking drill guide that corresponds with desired pre-drill size.
- » Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B Measure

» A standard style depth gauge is also provided.

c Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

Compression Slots

- » After fixation of the plate on the adjacent side of the joint, drill the compression slot first.
- » Pre-drill on the side of the compression slot furthest from the joint using the provided offset tissue protector.
- » Measurement can be taken from the drill bit at the top of the tissue protector.
- » Insert a non-locking screw into the compression hole, removing the temporary fixation pin prior to fully tightening the screw
- » Ensure bicortical fixation for maximum compression.

■ Off-Axis Drilling*

- » Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

F Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.

Lapidus.

1 Surgical Approach

» Perform dorsomedial incision just medial to the EHL tendon extending 2-3 cm on either side of the 1st TMT joint.

2 Joint Preparation

- » Position the distractor over the joint.
- » Using the distractor as a guide, insert one 2.5 mm distractor pin on each side of the joint.
- » Distract the joint until adequate exposure is achieved.
- » Remove all articular cartilage exposing bleeding bone.
- » The 1.6 mm wire may be used to perforate the decorticated joint surfaces.
- » Bone graft may be used as needed to facilitate joint fusion.

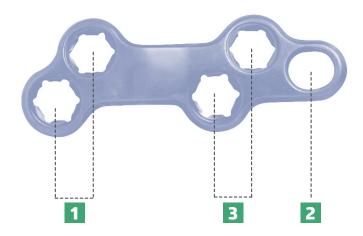
3 Plate Verification

» Thread the appropriate drill guide into the plate and use drill guide as a "joy-stick" to verify proper plate selection.

4 Plate Bend

» Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation


» The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.

6 Interfragmentary Cannulated Screw Placement

- » Place the 1.1 x 150 mm guidewire across the plantar aspect of the joint. Verify placement of the wire fluoroscopically.
- » Place the depth gauge over the wire to determine screw length. If the screw will be left proud, add the screw head height to the selected screw.
- » Place the countersink over the guidewire and countersink under manual power to recess the head of the screw to the desired depth. Avoid over-countersinking which may compromise the proximal cortex. Washers may be used if the proximal cortex is compromised.
- » Place the drill over the guidewire and drill just past the joint.
- » Place the screw over the guidewire and drive under manual power until screw is fully seated. Verify the final placement fluoroscopically.

② Place the screws in the Lapidus plate in the following order by zone.

A On-Axis Drilling*

- » Select the locking drill guide that corresponds with desired pre-drill size.
- » Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B Measure

» A standard style depth gauge is also provided.

c Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

D Compression Slots

- » After fixation of the plate on the adjacent side of the joint drill the compression slot first.
- » Pre-drill on the side of the compression slot furthest from the joint using the provided offset tissue protector.
- » Measurement can be taken from the drill bit at the top of the tissue protector.
- » Insert a non-locking screw into the compression hole, removing the temporary fixation pin prior to fully tightening the screw
- » Ensure bicortical fixation for maximum compression.

■ Off-Axis Drilling*

- » Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

F Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.

TMT Fusion.

1 Surgical Approach

» Perform dorsal incision directly over the TMT joint.

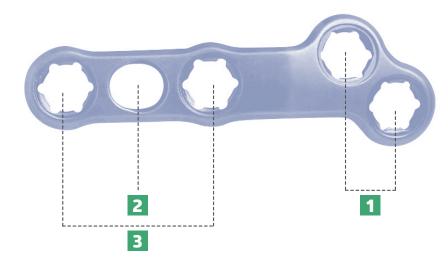
2 Joint Preparation

- » Position the distractor over the joint.
- » Using the distractor as a guide, insert one 2.5 mm distractor pin on each side of the joint.
- » Distract the joint until adequate exposure is achieved.
- » Remove all articular cartilage exposing bleeding bone.
- » The 1.6 mm wire may be used to perforate the decorticated joint surfaces.
- » Bone graft may be used as needed to facilitate joint fusion.

3 Plate Verification

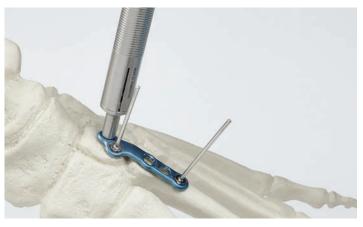
» Thread the appropriate drill guide into the plate and use drill guide as a "joy-stick" to verify proper plate selection.

4 Plate Bend


» Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation

» The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.


② Place the screws in the TMT Fusion plate in the following order by zone.

A On-Axis Drilling*

- » Select the locking drill guide that corresponds with desired pre-drill size.
- » Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B Measure

» A standard style depth gauge is also provided.

c Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

D Compression Slots

- » After fixation of the plate on the adjacent side of the joint, drill the compression slot first.
- » Pre-drill on the side of the compression slot furthest from the Joint using the provided offset tissue protector.
- » Measurement can be taken from the drill bit at the top of the tissue protector.
- » Insert a non-locking screw into the compression hole, removing the temporary fixation pin prior to fully tightening the screw.
- » Ensure bicortical fixation for maximum compression.

■ Off-Axis Drilling*

- » Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

F Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.

Evans Osteotomy.

1 Surgical Approach

» Perform longitudinal incision along the calcaneocuboid joint.

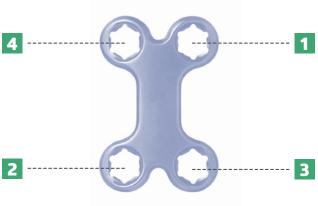
4 Plate Bend

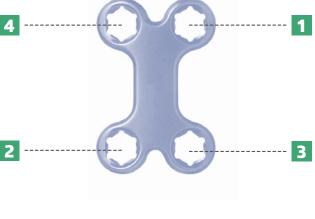
» Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation

The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.

2 Osteotomy and Bone Graft Placement


- » Make transverse cut 1-1.5 cm posterior to the calcaneocuboid joint.
- » Finish with a straight osteotome.
- » Insert one 2.5 mm distractor pin half way between the calcaneocuboid joint and the osteotomy.
- » Place the distractor over the 2.5 mm pin and adjust the distractor so the second pin is posterior to the osteotomy and roughly 2 cm from the first pin.
- » Using the distractor as a guide, insert the second 2.5 mm pin through the distractor and distract.
- » When selecting an Evans plate with no wedge, place a structural bone graft wedge into the osteotomy to maintain the correction
- » Backfill with DBM Putty as needed.



3 Plate Verification

» Thread the appropriate drill guide into the plate and use drill guide as a "joy-stick" to verify proper plate selection.

• The Evans plate is universal for the order in which the screws are placed.

c Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are

■ Off-Axis Drilling*

- » Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

A On-Axis Drilling*

- » Select the locking drill guide that corresponds with desired pre-drill size.
- » Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B Measure

» A standard style depth gauge is also provided.

E Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.

Cotton Osteotomy.

1 Surgical Approach

» Perform dorsal incision directly over the medial cuneiform.

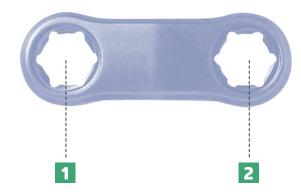
2 Osteotomy and Bone Graft Placement

- » Identify the center of the medial cuneiform flourscopically.
- » Using a micro-sagittal saw, cut through the medial cuniform.
- » Finish with a straight osteotome.
- » Place a structural bone graft wedge into the osteotomy to maintain the correction.
- » Backfill with DBM Putty as needed.

3 Plate Verification

» Thread the appropriate drill guide into the plate and use drill guide as a "joy-stick" to verify proper plate selection.

4 Plate Bend


» Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation

» The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.

• The order in which the screws are placed for the Cotton plate are universal.

A On-Axis Drilling*

- » Select the locking drill guide that corresponds with desired pre-drill size.
- » Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B Measure

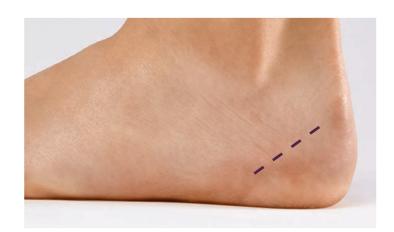
» A standard style depth gauge is also provided.

c Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

D Off-Axis Drilling*

- » Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.



E Fina

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.

MD(0)

1 Surgical Approach

» Perform lateral 45 degree incision beginning at the superior aspect of the posterior calcaneal tuberosity.

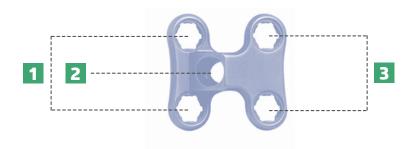
2 Osteotomy

- » Using a large sagittal saw, cut the calcaneus perpendicular to the longitudinal axis of the calcaneus.
- » Finish with a straight osteotome.

3 Plate Verification

» Thread the appropriate drill guide into the plate and use drill guide as a "joy-stick" to verify proper plate selection.

4 Plate Bend


» Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation

The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.

② Place the screws in the MDCO plate in the following order by zone.


A On-Axis Drilling*

- » Select the locking drill guide that corresponds with desired pre-drill size.
- » Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B Measure

» A standard style depth gauge is also provided.

c Insert Screw

- » Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.
- » Achieve intraoperative compression using a non-locking screw in the 45 degree diagonal hole located on the plate step.

D Off-Axis Drilling*

- » Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)
- » Drill just past the distal cortex.
- » Measurement can be taken from the drill bit at the top of the drill guide.
- » Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

E Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.

Ordering information.

MTP Fusion Plate

Item No.	Description
MPP1001L	MTP Fusion Plate, 0°, Sml, Left
MPP1002L	MTP Fusion Plate, 5°, Sml, Left
MPP1003L	MTP Fusion Plate, 10°, Sml, Left
MPP1004L	MTP Fusion Plate, 0°, Med, Left
MPP1005L	MTP Fusion Plate, 5°, Med, Left
MPP1006L	MTP Fusion Plate, 10°, Med, Left
MPP1007L	MTP Fusion Plate, Revision, Left
MPP1001R	MTP Fusion Plate, 0°, Sml, Right
MPP1002R	MTP Fusion Plate, 5°, Sml, Right
MPP1003R	MTP Fusion Plate, 10°, Sml, Right
MPP1004R	MTP Fusion Plate, 0°, Med, Right
MPP1005R	MTP Fusion Plate, 5°, Med, Right
MPP1006R	MTP Fusion Plate, 10°, Med, Right
MPP1007R	MTP Fusion Plate, Revision, Right

Lapidus Plate

Item No.	Description
MPP2000U	Lapidus Plate, No Step
MPP2001U	Lapidus Plate, 1 mm Step
MPP2002U	Lapidus Plate, 2 mm Step
MPP2003U	Lapidus Plate, 3 mm Step
MPP2004U	Lapidus Plate, 4 mm Step

Item No.	Description
MPP4004U	TMT Offset Plate, 4 Hole
MPP4005U	TMT Offset Plate, 5 Hole

TMT Straight Plate

Item No.	Description
MPP3003U	TMT Straight Plate, 3 Hole
MPP3004U	TMT Straight Plate, 4 Hole
MPP3005U	TMT Straight Plate, 5 Hole

Cotton Plate

Item No.		Description
	MPP5000U	Cotton Plate, 2 Hole

Evans Plate

Item No.	Description
MPP6000U	Evans Plate, No Wedge
MPP6006U	Evans Plate, 6 mm Wedge
MPP6008U	Evans Plate, 8 mm Wedge
MPP6010U	Evans Plate, 10 mm Wedge

MDCO Plate

Item No.	Description
MPP7005U	MDCO Plate, 5 mm Step
MPP7075U	MDCO Plate, 7.5 mm Step
MPP7010U	MDCO Plate, 10 mm Step

2.7 mm Locking Screw

Item No.	Description
MPSL2710	Locking Screw, 2.7 x 10 mm
MPSL2712	Locking Screw, 2.7 x 12 mm
MPSL2714	Locking Screw, 2.7 x 14 mm
MPSL2716	Locking Screw, 2.7 x 16 mm
MPSL2718	Locking Screw, 2.7 x 18 mm
MPSL2720	Locking Screw, 2.7 x 20 mm
MPSL2722	Locking Screw, 2.7 x 22 mm
MPSL2724	Locking Screw, 2.7 x 24 mm
MPSL2726	Locking Screw, 2.7 x 26 mm
MPSL2728	Locking Screw, 2.7 x 28 mm
MPSL2730	Locking Screw, 2.7 x 30 mm

3.5 mm Locking Screw

Item No.	Description
MPSL3510	Locking Screw, 3.5 x 10 mm
MPSL3512	Locking Screw, 3.5 x 12 mm
MPSL3514	Locking Screw, 3.5 x 14 mm
MPSL3516	Locking Screw, 3.5 x 16 mm
MPSL3518	Locking Screw, 3.5 x 18 mm
MPSL3520	Locking Screw, 3.5 x 20 mm
MPSL3522	Locking Screw, 3.5 x 22 mm
MPSL3524	Locking Screw, 3.5 x 24 mm
MPSL3526	Locking Screw, 3.5 x 26 mm
MPSL3528	Locking Screw, 3.5 x 28 mm
MPSL3530	Locking Screw, 3.5 x 30 mm
MPSL3532	Locking Screw, 3.5 x 32 mm
MPSL3534	Locking Screw, 3.5 x 34 mm
MPSL3536	Locking Screw, 3.5 x 36 mm
MPSL3538	Locking Screw, 3.5 x 38 mm
MPSL3540	Locking Screw, 3.5 x 40 mm
MPSL3542	Locking Screw, 3.5 x 42 mm
MPSL3544	Locking Screw, 3.5 x 44 mm
MPSL3546	Locking Screw, 3.5 x 46 mm
MPSL3548	Locking Screw, 3.5 x 48 mm
MPSL3550	Locking Screw, 3.5 x 50 mm
MPSL3555	Locking Screw, 3.5 x 55 mm
MPSL3560	Locking Screw, 3.5 x 60 mm

2.7 mm Non-Locking Screw

Item No.	Description
MPSN2710	Non-Locking Screw, 2.7 x 10 mm
MPSN2712	Non-Locking Screw, 2.7 x 12 mm
MPSN2714	Non-Locking Screw, 2.7 x 14 mm
MPSN2716	Non-Locking Screw, 2.7 x 16 mm
MPSN2718	Non-Locking Screw, 2.7 x 18 mm
MPSN2720	Non-Locking Screw, 2.7 x 20 mm
MPSN2722	Non-Locking Screw, 2.7 x 22 mm
MPSN2724	Non-Locking Screw, 2.7 x 24 mm
MPSN2726	Non-Locking Screw, 2.7 x 26 mm
MPSN2728	Non-Locking Screw, 2.7 x 28 mm
MPSN2730	Non-Locking Screw, 2.7 x 30 mm

3.5 mm Non-Locking Screw

Item No.	Description
MPSN3510	Non-Locking Screw, 3.5 x 10 mm
MPSN3512	Non-Locking Screw, 3.5 x 12 mm
MPSN3514	Non-Locking Screw, 3.5 x 14 mm
MPSN3516	Non-Locking Screw, 3.5 x 16 mm
MPSN3518	Non-Locking Screw, 3.5 x 18 mm
MPSN3520	Non-Locking Screw, 3.5 x 20 mm
MPSN3522	Non-Locking Screw, 3.5 x 22 mm
MPSN3524	Non-Locking Screw, 3.5 x 24 mm
MPSN3526	Non-Locking Screw, 3.5 x 26 mm
MPSN3528	Non-Locking Screw, 3.5 x 28 mm
MPSN3530	Non-Locking Screw, 3.5 x 30 mm
MPSN3532	Non-Locking Screw, 3.5 x 32 mm
MPSN3534	Non-Locking Screw, 3.5 x 34 mm
MPSN3536	Non-Locking Screw, 3.5 x 36 mm
MPSN3538	Non-Locking Screw, 3.5 x 38 mm
MPSN3540	Non-Locking Screw, 3.5 x 40 mm
MPSN3542	Non-Locking Screw, 3.5 x 42 mm
MPSN3544	Non-Locking Screw, 3.5 x 44 mm
MPSN3546	Non-Locking Screw, 3.5 x 46 mm
MPSN3548	Non-Locking Screw, 3.5 x 48 mm
MPSN3550	Non-Locking Screw, 3.5 x 50 mm
MPSN3555	Non-Locking Screw, 3.5 x 55 mm
MPSN3560	Non-Locking Screw, 3.5 x 60 mm

Item No. Description MPN10020 Drill Bit, 2.0 mm MPN10028 Drill Bit, 2.8 mm MSN10004 Drill Bit, Cannulated, 2.5 mm

MTP Fusion Metatarsal Reamers

Item No.	Description
MPN20016	Metatarsal Reamer, 16 mm
MPN20018	Metatarsal Reamer, 18 mm
MPN20020	Metatarsal Reamer, 20 mm
MPN20022	Metatarsal Reamer, 22 mm

MTP Fusion Phalangeal Reamers

Item No.	Description
MPN20116	Phalangeal Reamer, 16 mm
MPN20118	Phalangeal Reamer, 18 mm
MPN20120	Phalangeal Reamer, 20 mm
MPN20122	Phalangeal Reamer, 22 mm

Drivers

Item No.	Description
MPN30001	Driver, Straight, T15
MPN30002	Driver, Retaining, T15
MSN30002	Driver, Cannulated, T10

Drill Guides

tem No.	Description
MPN40001	Drill Guide, Locking, 2.0 mm
MPN40002	Drill Guide, Locking, 2.8 mm

Tissue Protectors

Item No.	Description
MPN40003	Tissue Protector, 2.0 mm
MPN40004	Tissue Protector, 2.8 mm

Plate Benders

Item No.	Description
MPN40005	Plate Bender

Depth Gauges

Item No.	Description
MPN40006	Depth Gauge for 60 mm Wire
MSN40001	Depth Gauge for 150 mm Wire, Cannulated

Polyaxial Drill Guide

Item No.	Description
MPN40007	Drill Guide, Polyaxial, 2.0/2.8 mm

Guidewires

Item No.	Description
MSG16150	Guidewire, 1.6 x 150 mm, NT
MSG11150	Guidewire, 1.1 x 150 mm, NT

Item No.	Description
MPPF1110	Temporary Fixation Pin, 1.1 x 10 mm
MPPF1120	Temporary Fixation Pin, 1.1 x 20 mm

Handle

Item No.	Description
MSN90001	Handle AO/OC Ratcheting Cannulated

Pickups

Item No.	Description
MSN90003	Pickups

Countersink

Item No.	Description
MSN20003	Countersink, Cannulated, 3.0/3.5 Headed

Cannulated Screws

Item No.	Description
MSD03520	Screw, Cannulated, Headed, 3.5 x 20 mm
MSD03522	Screw, Cannulated, Headed, 3.5 x 22 mm
MSD03524	Screw, Cannulated, Headed, 3.5 x 24 mm
MSD03526	Screw, Cannulated, Headed, 3.5 x 26 mm
MSD03528	Screw, Cannulated, Headed, 3.5 x 28 mm
MSD03530	Screw, Cannulated, Headed, 3.5 x 30 mm
MSD03532	Screw, Cannulated, Headed, 3.5 x 32 mm
MSD03534	Screw, Cannulated, Headed, 3.5 x 34 mm
MSD03536	Screw, Cannulated, Headed, 3.5 x 36 mm
MSD03538	Screw, Cannulated, Headed, 3.5 x 38 mm
MSD03540	Screw, Cannulated, Headed, 3.5 x 40 mm

Washers

Item No.	Description
MSW03035	3.0/3.5 Washer (for Cannulated Screws)

Joint Distractor

Item No.	Description
MPX00001	Distractor, Joint-Jack

Distractor Pins

Item No.	Description
MPX25100	Pin, Joint-Jack, 2.5 x 100 mm

System Tray

Item No.	Description
MPTF00T1	System Tray

One step and

For more than 50 years, we've been helping healthcare run better as the nation's largest privately held manufacturer and distributor of medical products. We're your strategic partner, empowered to innovate and tailor healthcare solutions that flex with your ever-changing needs. So you're always one step ahead.

Medline Industries, Inc. Three Lakes Drive, Northfield, IL 60093

Medline United States 1-800-MEDLINE (633-5463) medline.com | info@medline.com Medline Canada 1-800-396-6996 medline.ca | canada@medline.com Medline México 01-800-831-0898 medlinemexico.com | mexico@medline.com

FOLLOW US fin y BLOG